
 © 2013 Quadros Systems, Inc. All rights reserved

According to the 2012
UBM Embedded Market
study, 70% of embedded
systems have a real-time
requirement.

The purpose of this
paper is to provide a top-
level overview of RTOS
systems and concepts. If
you need information on
how these concepts are
implemented in a specific
real-time operating
system, detailed
information on the RTXC
Quadros RTOS is
available here:

www.quadros.com/rtos

Embedded Systems are
generally understood to
mean devices in which
intelligence, and often
communications
capability, is ‘embedded’
inside the product. These
are single purpose, pre-
programmed systems as
opposed to personal
computers which are
multi-purpose computing
platforms.

RTOSes, Kernels and Executives
A real-time operating system or RTOS (sometimes
known as a real-time executive or kernel) is a library
of functions that implements rules and policies to
manage time-critical allocation of a computer
system’s resources. RTOSes are commonly used in
embedded systems.

The RTOS provides a software abstraction layer to
the underlying microcontroller or processor (CPU).
The developer’s application code uses the inherent
capabilities of the RTOS to manage access to and
scheduling of CPU resources. In short, the RTOS

 Determines which execution entities in the
application should control the CPU, in what order,
and how much time is allowed for each before
giving up processor control.

 Manages the sharing of internal memory among
multiple tasks.

 Handles input and output to and from attached
hardware devices, such as serial ports, buses, and
I/O device controllers.

 Sends messages about the status of operation and

any errors that may have occurred

Reasons to Use an RTOS
A well-designed RTOS provides a number of tangible
benefits.

 Provides a solid foundation for your project with
rules and policies to ensure consistency and
repeatability

 Simplifies development and improves productivity

 A rich set of kernel services (API calls) that save
you from writing extensive code and using too
much system overhead to achieve the same
result.

 High level RTOS objects can easily handle
complex functions. Significant time savings
from having to do everything yourself.

 Presents an abstraction to the processor which
means you don’t have to focus on many of the HW
details

 Implements a reliable scheduling system to
successfully manage multiple operations sharing
the same processor

 allows you to schedule when those operations
run so that they do not conflict with each other

 allows you to manage access to various
processor or peripheral resources such that
operations can run successfully without
interference.

 Efficiently handles housekeeping functions –
saving and restoring register sets, managing
memory buffers

 Integrates and manages resources needed by
communications stacks and middleware (TCP/IP,
USB, CAN, FAT and Flash file systems, etc.)

 Optimizes use of system resources and improves
product reliability, maintainability and quality

An RTOS can bring all those elements together into a
platform that allows the application developer to
begin development at a much higher point, enabling
a shorter time to market with higher reliability and
lower risk.

Components of an RTOS

Scheduler
The scheduler, the central element in an RTOS, de-
termines which application code entities get access
to the CPU and in what order. In most commercial
RTOSes there are three scheduling models: preemp-
tive, cooperative (also called round robin), and time-
sliced.

Function Library
The function library of the RTOS serves as the inter-
face between the application code and the RTOS.
Often known as Application Program Interfaces
(APIs), these functions encapsulate the operational
requirements of the RTOS into its various services.
Application code entities make requests to the
kernel through these APIs in order
to cause the desired programmatic behavior of the
application.

Classes and User-defined Data Objects
RTOSes use data structures generally organized into
groups or classes by operation type. The user de-
fines the set of objects in each class that the RTOS
will use in controlling the application. The names
may be somewhat different, depending on the RTOS

Introduction to Introduction to
RealReal--Time Operating SystemsTime Operating Systems

 © 2013 Quadros Systems, Inc. All rights reserved

Hard vs. Soft real-time

In hard real-time, certain
operational time
constraints (deadlines)
must be met to avoid a
catastrophic failure. If all
elements meet their
deadlines, the system is
predictable and
considered schedulable.
Such a system is also
referred to as
deterministic.

With soft real-time,
timing constraints are
less restrictive. Even a
failure of an element to
meet its deadline still
provides some value to
the application. The soft
real-time task does not
offer a guarantee to
meet its time constraint,
but only that it will make
a best effort attempt.

Most modern real-time
kernels make use of the
work done in the mid-
1960s by Dr. Edsger
Dijkstra and the concept
of a ‘society of sequential
processes.’ Although this
concept of ‘multitasking’
was an acknowledged
concept before that
time, Dr. Dijkstra’s work
had the greatest impact
on the industry because
it formulated a set of
constructs and rules for
implementing the
concept.

RTOS Properties and Functions

Primary Requirements

 Manage the processor and other system resources
to meet the requirements of the application

 Respond to, and synchronize with, events

 Move data efficiently between processes

 Manage the demands of the process with respect
to an independent variable such as time

 Perform in a predictable manner with operations
that take place within a predictable period of time

While the capabilities above are primary require-
ments, there are secondary requirements including
the ability to provide:

 Efficient management of RAM

 Exclusive access to resources

System Resource Management
The primary function of the RTOS is to manage
certain system resources, such as the CPU, memory,
and time. Each resource must be shared among the
competing processes to accomplish the overall
function of the system:

 System memory is a finite resource and therefore
must be shared.

 Because the CPU operates much faster than the
physical process it is controlling or monitoring, the
CPU can be shared to prevent delays in pro-
cessing. Such delays would violate a basic system
policy.

 Time is the most difficult and unforgiving resource
managed by the RTOS.

RTOS services must be designed and coded to

require minimal execution time yet remain

predictable. Execution speed of the RTOS services

determines the responsiveness of the system to

changes in the physical process. However, it is

equally important that each service be as determinis-

tic as possible (predictable) with respect to time.

Without predictable timing, a system designer has

no assurance that the time constraints of the

physical process will be met.

Multitasking
Without a CPU dedicated to each code entity it is
impossible to implement simultaneous operations.
However, CPU access time can be shared and
achieve the appearance of simultaneous operation.
By decomposing the functions of the system into
different program code elements (tasks or threads)
and rapidly switching the CPU between them, the
designer can achieve the effect of concurrency. The
orderly switching between many tasks is the basis of
the concept of multitasking.

Figure 2 shows how multitasking is implemented.
The left side shows the typical processor model,
consisting of a CPU, some registers, a processor
status, a program counter (PC), and a stack.

To share the physical processor, each task needs to

Photo by: Hamilton Richards

Introduction to RealIntroduction to Real--Time Operating SystemsTime Operating Systems
Page Page 22

Figure 2

Multi-tasking is best thought of as the physical processor being shared by

any number of virtual processors, governed by a scheduler

 © 2013 Quadros Systems, Inc. All rights reserved

have the same properties as the physical processor:
a set of registers, a status, a PC to point to the next
executable instruction of the task, and a stack for its
local variables. Of course, each task will also have its
set of code that it is executing.

The right side of Figure 2 depicts several virtual
processors (tasks). Each task awaits its opportunity
to have its properties switched into the physical
processor. Until a task gains control of the CPU it
consumes no resources of the physical processor
except for the memory it occupies.

The scheduler constantly makes judgments about
which task needs to control the CPU at any given
time. When it is necessary to stop the currently
running task and give CPU control to a new task, the
scheduler swaps the properties (or operating
context) of the running task with those of the new
task. This procedure is called a ‘context switch.’

Priority and Preemption
To achieve the goal of efficient, shared CPU usage, a
multi-tasking real-time operating system uses an
orderly transfer of control from one task to another.
To make this possible the scheduler must monitor
system resources and the execution state of each
task (running, ready, or blocked) to ensure that each
entity receives control of the CPU in a timely
manner.

The key word here is timely. A real-time system that
does not perform a required operation at the correct
time has failed. That failure can have consequences
that range from benign to catastrophic. This means
that response time for a request for kernel services
and the execution time of these services must be
fast and predictable. The inherent predictability of
the RTOS allows application program code to be
designed to ensure that all needs are detected and
processed.

Real-time applications usually consist of several pro
cesses (tasks and threads) that require control of
system resources at varying times due to external or
internal events. It is generally considered to be bad
design to allow a single task or thread to monopolize
a system resource if a more important task requires
the same resource. There must be a method of
interrupting the operation of the lesser entity and
granting the resource to the more important one.

Scheduling Models

There are several common scheduling models for
allowing tasks to receive processor time. The utility
of each of these depends on the requirements of the
application.

Round-Robin (Cooperative) Scheduling

All tasks are of equal importance and are at the
same priority. Task execute sequentially. Once a task
receives processor control it will run until it
completes or reaches a point of re-scheduling. It

then yields CPU control to allow the Scheduler to
determine the next task to get CPU control. During
its execution cycle, a round-robin-scheduled task
cannot block, wait, pause, or do anything that would
allow another task to gain CPU control, however it
can be prempted by an Interrupt (Exception). In
some cases it can yield.

Tick-Sliced Scheduling

Tick-sliced scheduling is a variant of round-robin
scheduling. Both methods are similar in every
respect except that a tick-sliced task can only run for
a predefined number of ticks (a tick quantum) from
an associated counter. The tick may represent time
or some other unit particular to the application. A
task remains in control of the CPU until the tick
quantum expires or until the task yields control or
blocks. If the tick quantum expires, the Scheduler
forces the task to yield if there is another task at the
same priority is waiting to run.

Preemptive Scheduling

Preemptive scheduling is the policy that leads to the
concept of preemptive scheduling in which the
Scheduler gives control of the physical processor to
the task that has the highest priority and is also
ready to accept control of the physical processor.

As seen in Figure 3, the task at the lower priority
(Task 2) is preempted at the occurrence of an event
that activates or releases Task 1.

Kernel Classes
 An RTOS operates on a set of structures commonly
called classes. Each class supports a set of operators
commonly called kernel services that are invoked by
application processes to achieve an expected
behavior. These classes include the following:

Tasks manage execution of program code; each task
is independent of other tasks but can establish
relationships with other tasks in many forms,
including data structures, input, output, or other
constructs.

Introduction to RealIntroduction to Real--Time Operating SystemsTime Operating Systems
Page Page 33

Figure 3
Task preemption

Priority Inversion
A fundamental maxim in
a real-time system is that
the highest priority task
that is ready to run must
be given control of the
processor. If this does
not happen deadlines can
be missed and the
system can become
unstable or worse.

Priority inversion simply
means that the priority
you established for a task
in your system is turned
upside down by the
unintended result of how
priorities are managed
and how system
resources are assigned. It
is an artifact of the
resource sharing systems
that are fundamental to
RTOS operation.

So how do you avoid
these situations or once
in them, how does the
system get out of the
situation?

We have an extensive
blog on the topic:
RTOS Explained. Here
you will find more
detailed explanations of
RTOS principles including
priority inversion.

http://info.quadros.com/blog/?Tag=RTOS+Explained
http://info.quadros.com/blog/?Tag=RTOS+Explained

 © 2013 Quadros Systems, Inc. All rights reserved

The RTXC Quadros family
of RTOSes was developed
to give developers the
flexibility and scalability
they need to efficiently
program with any or all
of the major processing
models: high speed
dataflow processing,
control processing,
convergent processing,
and multiprocessing.

Intertask communications are mechanisms to pass
information from one task to another following.
Commonly used classes for intertask communica-
tions include Semaphores, Messages and Mailboxes,
Queues, Pipes and Event Flags.

Semaphores provide a means of synchronizing tasks
with events.

Mutexes permit a task to gain exclusive access to an
entity or resource.

Timers and Alarms count ticks and generate signals.

Memory Partitions manage RAM to prevent frag-
mentation.

Queues permit passing of fixed amounts of data
from a producer to a consumer in FIFO order.

Messages and Mailboxes are useful in managing
variable size data transmissions from a sender to a
receiver.

Kernel Services are routines that are executed to
achieve certain behavior of the system. When an
application code entity requires a function provided
by the kernel, it initiates a kernel service request for
that function.

ISR (Interrupt Service Routine) is a software routine
that is activated to respond to an interrupt. (See
interrupt handling below.)

Interrupt Handling
Interrupts are generally external events from other
elements of the system that demand immediate
attention. When an interrupt occurs the processor
finishes the current instruction and then enters an
ISR, where

 the address where the interrupted process is to
continue following treatment of the interrupt is
saved, along with the state of the processor
(registers, etc.)

 the processor begins executing a routine to
service the device that caused the interrupt, and

 upon completion of the device handling, the ISR
restores the interrupted state of the processor
and returns to the code at the saved continuation
address.

Responsiveness and Latency
Prioritization is not a guarantee that a task will
execute on time. Other factors must be considered,
including the time the RTOS needs to release the
processor and schedule the next task. This is often
referred to as latency. Other scheduling variables
must also be considered. These include:

Introduction to RealIntroduction to Real--Time Operating SystemsTime Operating Systems
Page Page 44

References

Dijkstra, Edsger W. The structure of the 'THE'-multiprogramming system (EWD-196). E.W. Dijkstra Archive.
Center for American History, http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD196.html

Barrett, Andrew T. “On Schedule”, Micro Technology Europe, August 2012

