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According to the 2012 
UBM Embedded Market 
study, 70% of embedded 
systems have a real-time 
requirement.  

 

 

The purpose of this 
paper is to provide a top-
level overview of RTOS 
systems and concepts. If 
you need information on 
how these concepts are 
implemented in a specific 
real-time operating 
system, detailed 
information on the RTXC 
Quadros RTOS is 
available here: 

www.quadros.com/rtos  
 
 
 

Embedded Systems are 
generally understood to 
mean devices in which 
intelligence, and often 
communications 
capability, is ‘embedded’ 
inside the product. These 
are single purpose, pre-
programmed systems as 
opposed to personal 
computers which are 
multi-purpose computing 
platforms. 
 
 
 
 
 
 
 
 

 

 

RTOSes, Kernels and Executives 
A real-time operating system or RTOS (sometimes 
known as a real-time executive or kernel) is a library 
of functions that implements rules and policies to 
manage time-critical allocation of a computer 
system’s resources. RTOSes are commonly used in 
embedded systems.  

The RTOS provides a software abstraction layer to 
the underlying microcontroller or processor (CPU). 
The developer’s application code uses the inherent 
capabilities of the RTOS to manage access to and 
scheduling of CPU resources. In short, the RTOS 

 Determines which execution entities in the 
application should control the CPU, in what order, 
and how much time is allowed for each before 
giving up processor control.  

 Manages the sharing of internal memory among 
multiple tasks. 

 Handles input and output to and from attached 
hardware devices, such as serial ports, buses, and 
I/O device controllers. 

 Sends messages about the status of operation and 

any errors that may have occurred 

Reasons to Use an RTOS 
A well-designed RTOS provides a number of tangible 
benefits. 

 Provides a solid foundation for your project with 
rules and policies to ensure consistency and 
repeatability  

 Simplifies development and improves productivity  

 A rich set of kernel services (API calls) that save 
you from writing extensive code and using too 
much system overhead to achieve the same 
result. 

 High level RTOS objects can easily handle 
complex functions. Significant time savings 
from having to do everything yourself. 

 Presents an abstraction to the processor which 
means you don’t have to focus on many of the HW 
details 

 Implements a reliable scheduling system to 
successfully manage multiple operations sharing 
the same processor 

 allows you to schedule when those operations 
run so that they do not conflict with each other 

 allows you to manage access to various 
processor or peripheral resources such that 
operations can run successfully without 
interference. 

 Efficiently handles housekeeping functions – 
saving and restoring register sets, managing 
memory buffers 

 Integrates and manages resources needed by 
communications stacks and middleware (TCP/IP, 
USB, CAN, FAT and Flash file systems, etc.)  

 Optimizes use of system resources and improves 
product reliability, maintainability and quality 

An RTOS can bring all those elements together into a 
platform that allows the application developer to 
begin development at a much higher point, enabling 
a shorter time to market with higher reliability and 
lower risk. 

Components of an RTOS 

Scheduler  
The scheduler, the central element in an RTOS, de-
termines which application code entities get access 
to the CPU and in what order. In most commercial 
RTOSes there are three scheduling models: preemp-
tive, cooperative (also called round robin), and time-
sliced.  

Function Library  
The function library of the RTOS serves as the inter-
face between the application code and the RTOS. 
Often known as Application Program Interfaces 
(APIs), these functions encapsulate the operational 
requirements of the RTOS into its various services. 
Application code entities make requests to the 
kernel through these APIs in order  
to cause the desired programmatic behavior of the 
application.  

Classes and User-defined Data Objects 
RTOSes use data structures generally organized into 
groups or classes by operation type. The user de-
fines the set of objects in each class that the RTOS 
will use in controlling the application. The names 
may be somewhat different, depending on the RTOS 
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Hard vs. Soft real-time 

In hard real-time, certain 
operational time 
constraints (deadlines) 
must be met to avoid a 
catastrophic failure. If all 
elements meet their 
deadlines, the system is 
predictable and 
considered schedulable. 
Such a system is also 
referred to as 
deterministic. 

With soft real-time, 
timing constraints are 
less restrictive. Even a 
failure of an element to 
meet its deadline still 
provides some value to 
the application. The soft 
real-time task does not 
offer a guarantee to 
meet its time constraint, 
but only that it will make 
a best effort attempt. 

Most modern real-time 
kernels make use of the 
work done in the mid-
1960s by Dr. Edsger 
Dijkstra and the concept 
of a ‘society of sequential 
processes.’ Although this 
concept of ‘multitasking’ 
was an acknowledged 
concept before that 
time, Dr. Dijkstra’s work 
had the greatest impact 
on the industry because 
it formulated a set of 
constructs and rules for 
implementing the 
concept. 

RTOS Properties and Functions 

Primary Requirements 

 Manage the processor and other system resources 
to meet the requirements of the application 

 Respond to, and synchronize with, events 

 Move data efficiently between processes 

 Manage the demands of the process with respect 
to an independent variable such as time 

 Perform in a predictable manner with operations 
that take place within a predictable period of time 

While the capabilities above are primary require-
ments, there are secondary requirements including 
the ability to provide: 

 Efficient management of RAM 

 Exclusive access to resources 

System Resource Management 
The primary function of the RTOS is to manage 
certain system resources, such as the CPU, memory, 
and time. Each resource must be shared among the 
competing processes to accomplish the overall 
function of the system: 

 System memory is a finite resource and therefore 
must be shared.  

 Because the CPU operates much faster than the 
physical process it is controlling or monitoring, the 
CPU can be shared to prevent delays in pro-
cessing. Such delays would violate a basic system 
policy. 

 Time is the most difficult and unforgiving resource 
managed by the RTOS.  

RTOS services must be designed and coded to 

require minimal execution time yet remain 

predictable. Execution speed of the RTOS services 

determines the responsiveness of the system to 

changes in the physical process. However, it is 

equally important that each service be as determinis-

tic as possible (predictable) with respect to time. 

Without predictable timing, a system designer has 

no assurance that the time constraints of the 

physical process will be met.  

Multitasking 
Without a CPU dedicated to each code entity it is  
impossible to implement simultaneous operations. 
However, CPU access time can be shared and 
achieve the appearance of simultaneous operation. 
By decomposing the functions of the system into 
different program code elements (tasks or threads) 
and rapidly switching the CPU between them, the 
designer can achieve the effect of concurrency. The 
orderly switching between many tasks is the basis of 
the concept of multitasking.  

Figure 2 shows how multitasking is implemented. 
The left side shows the typical processor model, 
consisting of a CPU, some registers, a processor 
status, a program counter (PC), and a stack. 

To share the physical processor, each task needs to 

Photo by: Hamilton Richards  
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Figure 2 

Multi-tasking is best thought of as the physical processor being shared by  

any number of virtual processors, governed by a scheduler 
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have the same properties as the physical processor: 
a set of registers, a status, a PC to point to the next 
executable instruction of the task, and a stack for its 
local variables. Of course, each task will also have its 
set of code that it is executing.  

The right side of Figure 2 depicts several virtual 
processors (tasks). Each task awaits its opportunity 
to have its properties switched into the physical 
processor. Until a task gains control of the CPU it 
consumes no resources of the physical processor 
except for the memory it occupies.  

The scheduler constantly makes judgments about 
which task needs to control the CPU at any given 
time. When it is necessary to stop the currently 
running task and give CPU control to a new task, the 
scheduler swaps the properties (or operating 
context) of the running task with those of the new 
task. This procedure is called a ‘context switch.’ 

Priority and Preemption 
To achieve the goal of efficient, shared CPU usage, a 
multi-tasking real-time operating system uses an 
orderly transfer of control from one task to another. 
To make this possible the scheduler must monitor 
system resources and the execution state of each 
task (running, ready, or blocked) to ensure that each 
entity receives control of the CPU in a timely 
manner. 

The key word here is timely. A real-time system that 
does not perform a required operation at the correct 
time has failed. That failure can have consequences 
that range from benign to catastrophic. This means 
that response time for a request for kernel services 
and the execution time of these services must be 
fast and predictable. The inherent predictability of 
the RTOS allows application program code to be 
designed to ensure that all needs are detected and 
processed. 

Real-time applications usually consist of several pro
cesses (tasks and threads) that require control of 
system resources at varying times due to external or 
internal events. It is generally considered to be bad 
design to allow a single task or thread to monopolize 
a system resource if a more important task requires 
the same resource. There must be a method of 
interrupting the operation of the lesser entity and 
granting the resource to the more important one. 

Scheduling Models 

There are several common scheduling models for 
allowing tasks to receive processor time. The utility 
of each of these depends on the requirements of the 
application. 

Round-Robin (Cooperative) Scheduling 

All tasks are of equal importance and are at the 
same priority. Task execute sequentially. Once a task 
receives processor control it will run until it 
completes or reaches a point of re-scheduling. It 

then yields CPU control to allow the Scheduler to 
determine the next task to get CPU control. During 
its execution cycle, a round-robin-scheduled task 
cannot block, wait, pause, or do anything that would 
allow another task to gain CPU control, however it 
can be prempted by an Interrupt (Exception). In 
some cases it can yield. 

Tick-Sliced Scheduling 

Tick-sliced scheduling is a variant of round-robin 
scheduling. Both methods are similar in every 
respect except that a tick-sliced task can only run for 
a predefined number of ticks (a tick quantum) from 
an associated counter. The tick may represent time 
or some other unit particular to the application. A 
task remains in control of the CPU until the tick 
quantum expires or until the task yields control or 
blocks. If the tick quantum expires, the Scheduler 
forces the task to yield if there is another task at the 
same priority is waiting to run. 

Preemptive Scheduling 

Preemptive scheduling is the policy that leads to the 
concept of preemptive scheduling in which the 
Scheduler gives control of the physical processor to 
the task that has the highest priority and is also 
ready to accept control of the physical processor. 

As seen in Figure 3, the task at the lower priority 
(Task 2) is preempted at the occurrence of an event 
that activates or releases Task 1. 

Kernel Classes 
 An RTOS operates on a set of structures commonly 
called classes. Each class supports a set of operators 
commonly called kernel services that are invoked by 
application processes to achieve an expected 
behavior. These classes include the following: 

Tasks manage execution of program code; each task 
is independent of other tasks but can establish 
relationships with other tasks in many forms, 
including data structures, input, output, or other 
constructs. 
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Figure 3 
Task preemption 

Priority Inversion 
A fundamental maxim in 
a real-time system is that 
the highest priority task 
that is ready to run must 
be given control of the 
processor. If this does 
not happen deadlines can 
be missed and the 
system can become 
unstable or worse. 

Priority inversion simply 
means that the priority 
you established for a task 
in your system is turned 
upside down by the 
unintended result of how 
priorities are managed 
and how system 
resources are assigned. It 
is an artifact of the 
resource sharing systems 
that are fundamental to 
RTOS operation.  

So how do you avoid 
these situations or once 
in them, how does the 
system get out of the 
situation?  

We have an extensive 
blog on the topic:  
RTOS Explained. Here 
you will find more 
detailed explanations of 
RTOS principles including 
priority inversion. 

http://info.quadros.com/blog/?Tag=RTOS+Explained
http://info.quadros.com/blog/?Tag=RTOS+Explained
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The RTXC Quadros family 
of RTOSes was developed 
to give developers the 
flexibility and scalability 
they need to efficiently 
program with any or all 
of the major processing 
models: high speed 
dataflow processing, 
control processing, 
convergent processing, 
and multiprocessing.  

Intertask communications are mechanisms to pass 
information from one task to another following. 
Commonly used classes for intertask communica-
tions include Semaphores, Messages and Mailboxes, 
Queues, Pipes and Event Flags. 

Semaphores provide a means of synchronizing tasks 
with events. 

Mutexes permit a task to gain exclusive access to an 
entity or resource. 

Timers and Alarms count ticks and generate signals. 

Memory Partitions manage RAM to prevent frag-
mentation. 

Queues permit passing of fixed amounts of data 
from a producer to a consumer in FIFO order. 

Messages and Mailboxes are useful in managing 
variable size data transmissions from a sender to a 
receiver. 

Kernel Services are routines that are executed to 
achieve certain behavior of the system. When an 
application code entity requires a function provided 
by the kernel, it initiates a kernel service request for 
that function. 

ISR (Interrupt Service Routine) is a software routine 
that is activated to respond to an interrupt. (See 
interrupt handling below.) 

Interrupt Handling 
Interrupts are generally external events from other 
elements of the system that demand immediate 
attention. When an interrupt occurs the processor 
finishes the current instruction and then enters an 
ISR, where 

 the address where the interrupted process is to 
continue following treatment of the interrupt is 
saved, along with the state of the processor 
(registers, etc.) 

 the processor begins executing a routine to 
service the device that caused the interrupt, and  

 upon completion of the device handling, the ISR 
restores the interrupted state of the processor 
and returns to the code at the saved continuation 
address. 

Responsiveness and Latency 
Prioritization is not a guarantee that a task will 
execute on time. Other factors must be considered, 
including the time the RTOS needs to release the 
processor and schedule the next task. This is often 
referred to as latency. Other scheduling variables 
must also be considered. These include: 
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